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Previous dynamic building simulation studies have not often focused on analysing the sensitivity of peak
loads to input parameters. However, these peak loads may have a critical impact on system design capac-
ities and power network operation. This study aims to examine the sensitivity of cooling demand related
results (total electricity demand, HVAC end-use and space cooling) in a large office building using two
global sensitivity analysis methods: Morris elementary effect and Sobol indices. More specifically, this
paper examines the implications of different type of climates to the uncertainty in these different cooling
output results and the sensitivity of the different parameters for each result. Moreover, this paper inves-
tigates the difference between the effects of annual and peak analysis for cooling demand of office build-
ings, which can provide insight on cooling demand from the perspectives of total cooling energy and
system capacity for building cooling systems, respectively.
This study has found that generally, the changes are more significant for peak demand than for annual

demand. The coefficient of variation for the total peak demand is around 25% and 21% for total annual
demand. This study identifies that the ventilation rate is the parameter that contributes the largest for
the uncertainty in electricity demand of the HVAC end-use, between 50% and 70% of the change (ST), both
for annual and peak demand. Regarding the effect on total electricity demand, ventilation rate is still one
of the most critical factors, but equipment and lighting densities also become a significant contributor to
the sensitivity of the total demand.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Building performance simulation (BPS) is one of the most pow-
erful analytical tools to assess the energy performance of buildings
[1,2]. Within the building industry and building research area,
these types of tools can help to address some of the unprecedented
design challenges that are likely to exist in the years ahead (e.g.:
adaptation to climate change impacts, crescent urbanisation and
increasing complexity of systems operation). However, the utilisa-
tion and development of these models may present multiple chal-
lenges [3,4], as this requires a detailed understanding of several
complex sub-models and their interactions [1,3,5]. In addition, it
requires detailed physical correctness of the model, thus detailed
characterisation of the building’s envelope and operation. Simi-
larly, rational and sensible development of modelling approaches
and definition of their outputs is required, to keep models targeted
to the objectives of the simulation study [1,5]. Furthermore, the
adaptation of buildings to the impacts of climate change is a main
challenge in the design of buildings [1]. This will require detailed
simulation to estimate how building energy performance changes
with meteorological conditions and due to uncertainty of design
conditions.

In recent years, it has been established that the predicted
energy performance of buildings can significantly and systemati-
cally diverge from the real performance [6], this is referred to as
the performance gap. De Wilde [4] emphasises that the perfor-
mance gap literature is mainly focused on the differences between
predicted energy use and measured in actual buildings. To bridge
the gap, it is necessary to establish how, what and when measure-
ments and estimations of energy demand should be compared.
Also, it is necessary to understand that the energy performance
models have limitations, and one should expect and accept differ-
ences between the model results and actual building performance.
It is also important to use the correct modelling tools, and analysts
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should have the ability and knowledge to apply them appropriately
[6]. In not doing so, the credibility of models, modellers and design
teams is affected and the design solutions proposed by the industry
to reduce energy consumptions, shave peak loads on buildings
operations may be rejected.

Energy consumption of buildings has been reducing, driven by
stricter guidelines and standards that follow more overarching ini-
tiatives to achieve international sustainability goals [1]. Some of
these initiatives are the 20–20–20 targets in the EU or the net-
zero emission target by 2050 in the UK. These have been particu-
larly successful at reducing the heating demand of buildings
through improvements in insulation and airtightness [7]. Stricter
insulation and airtightness standards have led to more frequent
episodes of overheating in naturally ventilated buildings during
the warmest periods in the summer and during heatwaves over
the last ten years [8]. These efforts to achieve high-performance
buildings have been mainly focused on reducing energy demand.
However, systematic and holistic design optimisation is needed
to avoid unintended side effect from changes to building design
standards [1,5]. This type of approach is necessary to evaluate
the energy performance analysis of buildings in the future, as sev-
eral types of uncertainties exist. On one hand, the uncertainty
related to the rising temperatures due to the implications of cli-
mate change. On the other, the inherent uncertainty of the future
technological scenarios assumptions on the building systems.
Therefore, it is important to analyse and estimate how much addi-
tional space cooling requirements and inherent energy consump-
tion for heating, ventilation and air conditioning (HVAC) systems
are required, considering different scenarios and uncertainty on
the set of design assumptions.

BPS is often applied to address design questions regarding opti-
misation and quantification of the annual energy demand of build-
ings, thermal comfort of occupants and sizing of HVAC
components/systems [1]. More research has been done using BPS
tools as computational capacity has been increasing. BPS tools
can deliver results on a broad array of metrics, different periods
and considering diversified assumptions. Most of the existing liter-
ature looking at the energy performance of buildings is focused on
total annual energy demand and carbon emissions. It often analy-
ses end-uses such as cooling and heating demand [9]. Some litera-
ture has studied overheating frequency [10], and only a minority
has analysed the effects of cooling peak loads [11–13].

Cooling peak loads are in many cases crucial for building and
HVAC system design, once they are critical to estimate HVAC sys-
tem design capacity. Current standardised design procedures for
HVAC capacity sizing are based on extreme weather conditions
(design days) and safety factors, as professionals tend to minimise
risks [14]. This lead to extreme oversizing of systems, and so to
inefficient operation of the systems for most of the time, and much
larger initial equipment costs. In addition, for power networks, the
peak demands are often driven by the cooling requirement of
buildings, in cooling dominated climates. However, in the litera-
ture analysed, building modelling approaches are often adapted
to tackle other types of research questions, more focused on annual
demands [9,15]. Thus, it is necessary to explore the implications on
buildings’ electricity peak demand due to changes on space cooling
requirements.

For robust assessment of the peak electricity demand on build-
ings, simulations with an hourly temporal resolution are required,
accounting for rapid building control responses, weather condition
changes, and so for the transient response on building conditions.
Dynamic building simulations are executed at hourly or sub-hourly
resolution to capture the transient responses of building systems
properties [16]. Dynamic building simulation tools employ mathe-
matical models that account for physical principles of building sys-
tems. These type of tools can help to analyse different building
2

design options and assumptions, but the modelling process can
be extremely cumbersome.

Hensen et al. [1] conclude that computational simulation is a
powerful analytical tool, but it is very difficult to ensure quality.
Therefore, the building design community should pursue an under-
standing of the topic area. Uncertainty and sensitivity analysis
techniques can enable further understanding of the parameters
and factors that are most critical for the energy performance of
buildings. This enables the accuracy of the models to be improved
by updating model assumptions. On the other hand, it enables the
dimensional reductions of models while preserving most of the
variance. Thus, the number of model input iterations can be min-
imised, and still effectively analyse the possible range of building
design choices.

Research studies using dynamic building simulation to assess
the energy performance of buildings often use office building mod-
els (e.g.: [9]). This may be the case, as typically office buildings
occupancy levels have more benchmark data available, significant
energy intensity and present less discrepancy over the whole
building stock data. Kavgic et al. [17] conclude that office buildings
have similar occupant and operational use characteristics, and a
clear distinction between occupied and unoccupied periods. The
majority of office buildings have mechanical cooling and ventila-
tion systems, due to high occupancy rates and significant density
of internal heat gains. For example, in the UK, 70% of the office
space area is estimated to have some sort of mechanical cooling
[18]. Therefore, office buildings are a natural choice to analyse
the implications of cooling demand for building electricity demand
using archetype building models.

There is still limited understanding of how sensitive peak loads
are on buildings, as much of the research focus has been in annual
energy demand. Hourly analysis is required to capture the tran-
sient performance of the building system and to robustly estimate
peak loads, which are critical for system design capacities and
study the resilience of energy systems. Physical building models
need to be executed at an hourly resolution to estimate annual
peak loads. This requirement makes models more costly, but the
detailed analysis of peak loads as discussed is crucial for many
design decisions, especially in future climates and in buildings
with cooling requirements, as discussed in further detail in the fol-
lowing paper section. The authors consider necessary to discuss in
more detail previous sensitivity analysis on building energy simu-
lation, to discuss the relevance of techniques utilised, different
approaches assembled and the existing gap on analysing cooling
demand, especially at peak loads.

Previous literature has not often focused on cooling demand for
office buildings and their peak loads. However, these peak loads
may have a critical impact on system design capacities and power
network operation, as suggested by Wood et al. [19]. Therefore,
this study aims to examine the sensitivity of cooling demand
related results (total electricity demand, HVAC end-use and space
cooling) in a large office building using two global sensitivity anal-
ysis methods: Morris elementary effect and Sobol indices. More
specifically, this paper examines the implications of different type
of climates to the uncertainty in these different cooling output
results and the sensitivity of the different parameters for each
result. Moreover, this paper would investigate the difference
between the effects of annual and peak analysis for cooling
demand of office buildings, which can provide insight on cooling
demand from the perspectives of total cooling energy and system
capacity for building cooling systems, respectively. This study
would also be helpful to identify cooling design best practices for
office buildings to guide energy engineers during the retrofit and
development of new buildings.

The paper will start by reviewing the existing literature on
uncertainty and sensitivity of buildings energy performance (2)
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and discussing differences between sensitivity analysis methods.
In the following section (3), the model assumptions, the modelling
approach and the statistical methods utilised are described under
the methodology section. In section 4, the results of the sensitivity
analysis on peak and annual cooling demand of the archetype
office building will be presented, analysed and discussed. Finally,
in section 5 the conclusions are presented.
2. Sensitivity analysis to assess building energy performance

When a simulation model is utilised, uncertainties in the input
parameters are propagated through the model and are echoed in
the outputs. Sensitivity analysis (SA) is a statistical method used
to quantify how the different inputs contribute to the variability
of the outputs [2,20]. A related technique is the uncertainty analy-
sis (UA), which studies the variability of the output results given
the uncertainty of the input parameters and is often run in tandem
with SA [2,20,21]. De Wilde [6] emphasises that it is necessary to
include uncertainty in even the most accurate models. For this, it
is necessary to start including probability density distributions
instead of using deterministic parameters to execute building per-
formance analysis (BPA).

SA can be divided into two main categories, local and global
[20]. A local sensitivity analysis (LSA) evaluates the response of
the model to one local parameter. Global sensitivity analysis
(GSA) explores the response of the model to changes in all input
parameters, which are varied simultaneously [20]. GSA provides
more information about the effect of varying model inputs but
demands more computational effort [20]. GSAs can be further sub-
divided into four categories [22]: regression, screening, variance-
based and meta-models. The Morris elementary effect (EE) method
is a screening method, which identify the effect of one input
parameter at a time but makes the changes from different starting
points [20]. This is considered to be a global method, even if it only
changes one parameter value between consecutive simulations
(one-at-a-time), which makes it a computationally efficient proce-
dure. It is also a widely accepted technique used for different com-
putational models. Regression methods compute statistic
indicators of regression analysis on a sample of different model
simulations results, to rank the importance of the input factors.
Standardised regression coefficient (SRC) is a statistical index from
the regression analysis that can be used to measure the linear rela-
tionship between outputs and inputs [23]. SRC methods are only
suitable for linear models with uncorrelated inputs [22].
Variance-based methods decompose the deviation of the model
output based on the uncertainty of input parameters [20]. These
methods require significant computational effort, as a large num-
ber of sampling iterations are needed to guarantee stable and sta-
tistically robust results [22]. Sobol and Fourier amplitude
sensitivity tests (FAST) are the most widely used variance-based
GSA methods [20].

Variance-based GSA methods for complex models, such as
dynamic building energy models, require large computational
capacity [22]. Variance-based SA methods become unstable, biased
and extremely costly with a large number of input parameters
(more than 10) [23]. Therefore, during the initial building design,
when more/larger design uncertainties exist, variance-based
approaches may be inappropriate, as there are too many parame-
ters for it to consider. At this stage, screening methods are recom-
mended [23], as they identify the most significant parameters out
of a larger set, with minimum computation cost. This approach can
reduce the number of parameters to be analysed during the follow-
ing more complex analysis. One approach often identified in the
literature is to apply a multi-stage SA on building energy perfor-
mance [9,13,24]. In an initial stage, a screening method such as
3

the Morris EE [9,24] or Lasso [13] is applied, which identifies the
most relevant parameters. In the following stages, more detailed
and complex GSA methods such as Sobol or FAST are applied to
evaluate a reduced number of parameters.

In BPA, SA has been applied to investigate different types of
modelling outputs: total energy demand [9], peak electricity loads
[12], cooling and heating demand [9,25], carbon emissions[26] and
overheat frequency [27]. For example, De Wilde et al. [27] identi-
fied that lighting and equipment gains are the key factors for the
annual electricity demand for cooling in office buildings. Sobol
and FAST are some of the methods that have been used frequently
to conduct SA in building energy models [9] and they are regarded
as some of the most higly accurate sensitivity methods [22]. Even if
they are computationally expensive, they enable the quantification
of the interaction effect and single effect of different variables
[20,22,23]. SRC is also often utilised (e.g. [11,28]); However, regres-
sion models have limitations when applied to non-linear systems
such as buildings [22].

A smaller number of studies have looked at the sensitivity in
peak cooling loads due to uncertainty on building model parame-
ters [11–13]. Dominguez-Muñoz et al. [11] analysed the results
of an office building model in Malaga, Spain, using a resistance–ca-
pacitance modelling method. Using an SRC for SA, the main con-
tributors for peak sensible space cooling are found to be thermal
inertia parameters, thermal mass and internal convective coeffi-
cient, over a group of 20 parameters. Eisenhower et al. [12], for a
building in Illinois, USA, used sensitivity decomposition indices
based on analysis of variance (ANOVA) tests, and analyses the total
sensitivity of total peak demand and annual consumption. Sun
et al. [13] used the ANOVA method to calculate sensitivity indices
on the chiller’s and boiler’s design peak load capacity.

Several studies have focused on analysing the uncertainty of
peak cooling demand by considering a probable range of input
parameters in dynamic building models [29–31]. For example,
Huang et al. [32] concluded that the hourly cooling distribution
is affected by two main factors, the weather conditions and the
building type. Huang et al. [32] analysed the uncertainty of peak
load on five different locations and for five different types of build-
ings. Also, Tian et al. [21] concluded that more effort is needed to
rigorously quantify the uncertainty of input parameters for UA in
BPA. In this review paper of UA in building energy assessment, Tian
et al. [21] concluded that UA is ready to become a mainstream
method in this research area and recommend that analysis should
consider analysis based on different building types, weather condi-
tions and building ages. However, these UA approaches are not
able to inform and quantify the sensitivity of changes in design
(envelope and system) input parameters.

The existing literature examining SA of energy demand in build-
ing energy models have shown the implications on annual
demand, either for total energy, heating, cooling or carbon emis-
sions. Few studies have focused explicitly on the sensitivity regard-
ing cooling demand, and especially on electricity demand for HVAC
end-use during peak periods. However, peak demand is critical to
define design capacities of HVAC systems and to analyse energy
systems operation limits. Moreover, current research using SA
methods to analyse cooling peak demand is only executed for a
single building, and a single climate [11–13]. However, some stud-
ies have identified that the sensitivity of the cooling output is high
to changes in the weather parameters [33]. UA studies looking at
peak cooling demand have also concluded that of the building
types and climate are significant sources of uncertainty of cooling
demand [32]. Therefore, this study will conduct a SA of a large set
of parameters on peak and annual cooling demand of a large office
building in a different type of climates, in order to improve current
understanding on the topic of peak and annual cooling. A two-
stage SA is performed, as the initial screening can identify the main



Table 1
Building model form details.

Total Area 46320 m2

Floors 12 stories + Basement
Total Height 51 m
Aspect ratio 1.5
Glazing Area ratio 0.38
Perimeter zones 29% of the total
Thermal zones 5 per floor
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contributors for change in the outputs, with lower computational
efforts. Morris EE method is the screening method utilised in this
study, as it has been identified to be a very efficient procedure
for this. On the second stage, a variance-based method can be exe-
cuted with a reduced number of input parameters, providing more
robust statistical information on the sensitivity of the building
model. Sobol is used in this stage, as it is often regarded as one
of the most accurate methods for building energy models.
3. Methodology

3.1. Model description: building conditions

In research, in order to reduce the onerous task to model gen-
eric representative buildings, archetype models are often used.
Archetype or reference building models are prepared to describe
the main characteristics of a large sample of similar buildings that
define a major class of buildings, such as the type of building use,
building vintage and size [34]. The use of reference building mod-
els in the research methodology assures those modelling assump-
tions comply with relevant benchmark data. In addition, it makes
research easily more replicable and easier to compare with similar
research studies.

The US Department of Energy (DOE) collects important energy-
related information through the Commercial Buildings Energy
Consumption Survey. This project led to the development of
national source data for the entire building stock [35]. Other insti-
tutions like the Chartered Institution of Building Services Engineers
(CIBSE) and the American Society of Heating, Refrigerating and Air-
conditioning Engineers (ASHRAE) have collected and made avail-
able several other datasets that statistically describe the type of
internal loads and schedules of building operations. These datasets
yield detailed information for office buildings [16,36]. These data
sources have been fundamental to develop archetype models.

The building energy model utilised in this research study is a
large office model from the US DOE commercial reference build-
ings dataset [35], using EnergyPlus simulation software [37]. The
DOE commercial reference buildings are a set of reference build-
ings developed by the US DOE, that are intended to represent the
whole national building stock. Deru et al. [35] reported in detail
the development and reference characteristics of these models,
including model definition and sources for the parameter values.
The dataset also takes into consideration, for each type of building,
three distinct construction vintages. Using the same base model
assumptions for different locations in different countries may
neglect the different design specificities of internal spaces, envel-
opes, and HVAC systems for different countries and regions. On
the other hand, for an accurate study of the propagation of uncer-
tainties in a model, there must exist standard base conditions to
proceed on the analysis of the impacts of the parameters changes.
In addition, one can argue that the uncertainty range study leads to
design conditions that will differ significantly from initial design
conditions for all locations. In this study, the building model base
case was adapted from the large office reference model type, con-
sidering the most recent construct vintage (new 2004) and from
the climate zone 3A-Miami. Operation schedules for lighting,
equipment and occupants in the model were adapted from Korlija
et al. [38].

The input values presented as the standard DOE case is
regarded as the base model case of this study. In Table 1, an over-
view is given of the building model form details. The total area of
the building modelled (see Fig. 1) is 46320 m2, in 12 equal stories
for office spaces plus one basement storey. The space in each office
floor is divided into four perimeter zones and a central core zone.
The core zone represents 71% of the total floor area. The ratio
4

between external building surfaces (external wall + roof) and floor
space area is 35%, and the ratio of glazed area per floorspace is
10.3%. Two water-cooled chillers are used as the cooling source
and multizone variable air volume equipment is considered for
space air distribution. The building model was created in Energy-
Plus v8.1 [37] and statistical functions from sensitivity package
in the R environment [39] were utilised to generate the building
model input samples and calculate sensitivities indexes. JEplus
[40] was used to manage the execution and for the collection
and summary of the batch of simulation output results.
3.2. Climate information

In this study, the sensitivity of the model was analysed consid-
ering different climate conditions, so six different locations were
considered in the analysis, and these are: C1-Singapore, C2-Cairo,
C3-Athens, C4-Beijing, C5-Lisbon and C6-London. The weather files
used to represent these climates are typical meteorological years
(TMY), and were accessed from the EnergyPlus database [37].
TMY is an annual data set for a specific location, that holds hourly
meteorological values that typify conditions over a longer period,
normally 30 years [41]. These type of yearly weather files are syn-
thesised by selecting individual months from different years of the
period considered, which is referred to as the Sandia method. In
Table 2, a summary overview of the climate data on these locations
is presented (see Fig. 2).

The meteorological conditions in these locations are signifi-
cantly different, as these aim to represent different types of cli-
mates. C1-Singapore weather is defined by a typical tropical
humid climate, leading to almost constant requirement for space
cooling. C2-Cairo is a hot desert climate, C3-Athens and C5-
Lisbon present Mediterranean climates. C4-Beijing is a continental
climate, and presents a large temperature amplitude between sea-
sons, with a dry winter and a hot and humid summer. On the other
hand, C6-London has a maritime humid climate, which drives
much lower cooling requirements. These differences are expressed
in the summary of the weather data presented in Table 2. Fig. 2
provides the summary statistics for several of the main weather
variables: a) and d) dry bulb temperature (DBT), b) global horizon-
tal radiation (GHR) and c) relative humidity (RH). Firstly, the num-
ber of cooling degree days (CDD) between all these locations varies
between a minimum of 32 in C6-London and 3454 in C1-Singapore.
The maximum annual dry-bulb temperature is the highest for C2-
Cairo, with 43 �C, and the lowest being for C6-London with a value
of 31.8 �C.
3.3. Model input uncertainty: data range/parameters

Table 3 presents the list of input parameters on the input space
of the building model, specifying their standard base value and the
range limit of values considered on the SA conducted in this study.
The selection of the input parameters for this study are based in
the parameters that have been previously identified in the litera-
ture to have the larger implications for the energy demand of
buildings [9,22], and preliminary studies conducted [24,33]. The



Table 2
Summary of weather files used.

C1 Singapore C2 Cairo C3 Athens C4 Beijing C5 Lisbon C6 London

Maximum DBT 33.8 �C 43 �C 37.2 �C 37.2 �C 36 �C 31.3 �C
CDD (base 18 �C) 3454 1747 1075 836 474 32

Fig. 1. DOE reference large office building model, created in Energyplus.
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standard base value of each parameter is defined based on the
input conditions of the large office reference model case chosen
as the base case. For more details, refer to [35] and supplementary
data section. Whenever the impacts of a particular parameter are
not to be explored in the SA iteration approach, this parameter in
the building model is assumed as the standard base case value.
The quantification of uncertainty on the probabilistic distribution
for input parameters is the most difficult aspect on UA [13,21]. A
number of studies from the high-performance building lab at Geo-
gia Tech University [13,14,32,42–45] has been looking at the quan-
tification and understanding of UA for building performance
simulation. In this study, the archetype model is representing sev-
eral vintages and locations, and so different benchmark data are
Fig. 2. Climate variables annual distribution: a) Monthly mean D

5

concatenated. Uniform distributions are commonly used to repre-
sent different possible design strategies [21]. In this study, the 14
design input parameters are considered as continuous variables
and the inputs ranges are assumed to be a uniform distribution.
The limits of their ranges are based on previous publications [9],
the range of existing parameters on the reference model dataset
[35] and on benchmark values given in standards and guidelines
[36,46,47].

For the parameter P14, the number of effective annual hours of
operation for equipment and lighting were controlled. Thus, the
range values were set from a standard base of 3132 for lighting
and 3602 for equipment to a maximum of 4007 and 4285, respec-
tively. This was achieved stretching the operational index of sched-
ules during weekend hours (6 am - 9 pm) and on the margins of the
standard workdays (6 am � 7 am and 8 pm � 9 pm). An illustration
of the changes in the schedules is shown in Fig. 3. The choice to
have large amplitudes of input parameters ranges, and uniform
distribution of these ranges, is made as this study intends to eval-
uate design parameter options. Therefore, the methodology is not
focused on comparing the plausibility of each value within the
range. Nevertheless, the input ranges are chosen based on limit
values that are considered possible to occur as design parameters
and have been reported in previous literature. To determine the
limit range of ventilation (P10) and infiltration (P11), larger ampli-
tudes were considered as the rates can be fine controlled and
assumptions can be substantially different based on the operation
of the space, for example, due to the indoor air quality (IAQ)
requirements needed or the number of people.
BT, and boxplot of annual values b) GHR, c) RH and d) DBT.



Table 3
Input Parameters used on sensitivity analysis.

Description Unit Lower Limit Upper Limit Std DOE

P01 Conductivity of the concrete layer on the external wall W.m�1.K�1 0.1 2 1.311
P02 Roof Conductivity W.m�1.K�1 0.005 0.08 0.049
P03 Solar heat gain coefficient (SHGC) – 0.075 0.5 0.25
P04 Window U-value W.m�2.K�1 1 7 6.92716
P05 Lighting W.m�2 5 20 10.76
P06 Equipment W.m�2 6 22 10.76
P07 Floor space per person m2.p.-1 5 20 18.58
P08 Ambient temperature set-point �C 21 26 24
P09 Cooling water set-point �C 5.5 8 6.7
P10 Ventilation m3.s�1.m�2 0.0002 0.005 0.000625
P11 Infiltration m3.s�1.m�2 0.0001 0.003 0.000302
P12 Reference coefficient of performance (COP) – 4 7 5.5
P13 Minimum chiller’s unload ratio – 0.1 0.3 0.2
P14 Schedule stretch – 0 1 0

P05 – 06 – 07 – 10 - per floor space area.
P11 – per external envelope surface area.
P13 – it is where the chiller capacity can no longer be reduced by unloading.

Fig. 3. Schedules used on simulations assumptions, a) lighting, b) equipment and c) people.
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3.4. Modelling framework

The SA approach of this study was conducted in two stages. Six
climates were considered, and the sensitivity of 14 input model
parameters was analysed, for four different output variables at
both peak and annual demand span; therefore eight output results
are analysed. The first sensitivity stage applied a screening method,
the Morris EE, considering all the 14 input parameters and over the
six climates. This stage aimed to identify the parameters that con-
tribute the most for each output results. On the second sensitivity
stage, a more detailed sensitivity method was applied, the Sobol
indices, which required more computational resources, but
enabled more detailed and quantifiable measurement of sensitivi-
ties. The coefficient of variation was calculated to measure the dis-
persion of the distribution of the outputs. To reduce the number of
samples to be simulated in this stage, eight parameters from the
initial stage were kept fix and only the uncertainty of six input
parameters was studied. The choice of these six parameters was
based on the sensitivity results achieved in the first stage. The
quantities of interest of the SA in this study was the annual
demand and peak demand for total electricity, HVAC end-use
(pumps, fans, chiller and heat rejection), non-HVAC demand, and
space cooling demand (SPC). A detailed description of these vari-
ables on EnergyPlus model outputs is given in the supplementary
section A6.EneryPlus output variables.
6

3.5. Coefficient of variation

The coefficient of variation (cv) is a measure of the variability of
a population in relation to the mean of this population and can be
written as Eq.(1). It is the ratio between the standard deviation of
the population (r) to the mean of the population (l). In this study,
the coefficient of variation was calculated for all output results of
each location, for both Morris and Sobol methods.

cv ¼ r
l

ð1Þ
3.6. Morris EE method

The Morris EE method is a screening method, a simple but effi-
cient way to evaluate the contribution of the main input parame-
ters, among the many that can exist in a model [20], to changes
in the output results, in this case: electricity demand end-uses
and SPC at annual and peak level. This method determines two
quantitative sensitivity measures, the mean (l*) and standard
deviation (r). The mean l* measures the overall influence of the
input factor analysed on the model output. The standard deviation
r assesses the effect of factors due to the interaction with the other
parameters. An extended description of the method is done by Sal-
telli et al. [20]. The sampling of the method consider k independent
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inputs (Xi), each parameter varies across p selected levels within
the input range, which creates equidistant spaces between input
points. The method produces multiple trajectories (r), with
(k + 1) samples, where two consecutive samples only differ in
one input parameter value, which is changed by relative fix dis-
tance in that coordinate (Xi), D. The equations of elementary effect
(EE), the mean (l*), and standard deviation (r) can be written as
Eq.(2), Eq.(3), Eq.(4), respectively.

EEi;jðxlÞ ¼ y xlþ1ð Þ � y xlð Þ½ �
D

ð2Þ

li
� ¼ 1

r

Xr

j¼1

EEi;j

�� �� ð3Þ

r2
i ¼ 1

r � 1

Xr

j¼1

EEi;j � l
� �2 ð4Þ

where
li
�
 Mean, sensitivity measure
ri
 Standard deviation, sensitivity measure
EEji

Elementary effect relative to factor i along trajectory j
r
 Total number of trajectories

j
 Current trajectory

i
 Parameter analysed

D
 Sampling distance interval
In the Morris EE stage of this study a total of 14 input parameters
were screened, considering that each input parameter range is var-
ied across eight equidistant selected levels (p) and considering a
total number of 90 trajectories (r). This number of trajectories
was considered a large enough number of trajectories for the num-
ber of parameters and levels selected [48]. Each trajectory included
15 samples (14 + 1) configurations and thereby created a total num-
ber of 1200 samples. The method was applied considering each of
the six climates, consequentially generating a total number of
7200 simulations. The sensitivity metrics, l* and r were calculated
for each one of the output metrics considered. The importance of
input parameters were ranked based on the l*, and an assessment
of the influence on each output metric was done and contrasted
between the different climates.

3.7. Sobol indices

The second stage of the sensitivity approach of this study
applied a more complex variance-based method, the Sobol
method. Sobol is considered to be one of the most efficient meth-
ods to quantify the variance of the output and decompose it
according to the uncertainty of input factors [20]. At this stage,
the approach considered uncertainty in six input parameters, three
for internal heat gains: lighting - P05, equipment - P06, and people
- P07, ambient set point – P08, ventilation rate - P10 and cooling
reference COP - P12. The Sobol method considered used two ran-
dom samples with 2500 iterations of the input parameters using
random sampling techniques. Thereafter, six more sample
matrixes (Ci) were generated, based on the replacement of values
in sample A by the correspondent parameter values on sample B.
This made a total number of 20,000 iterations of the building
model condition, as there were two base sample iterations (A
and B), and six more transformed samples (C). Fig. A.5–1 and
Fig. A.5–2 show the convergence of Sobol indices, both on Peak
and Annual total electricity demand for all parameters, with the
sample size, which indicates the stability of the results presented.
7

Variance effect indices were computed giving the full impact
input sample iterations, measuring the first-order (Si) and total-
effect indices (ST) of the input model parameters. Si is the measure
of the main effect of the parameter, indicating how much the out-
put variance could be reduced if the parameter i could be fixed. ST
is the total-effect Sobol index, and it is the addition of the param-
eter’s main effect and the interaction effect with other parameters.
The main effect (Si) and the total effects (ST) can be computed as Eq.
(5) and Eq.(6) from Saltelli et al. [20].

Si ¼ V E YjXið Þ½ �
V Yð Þ ð5Þ

ST ¼ 1� V E Y jX ið Þ½ �
V Yð Þ ð6Þ

where
Y
 Generic scalar model output equal to Y = f(X)

X
 All Xi factors

X i
 Matrix of all factors but Xi
Xi
 Matrix of generic factor i

VðÞ
 Variance
In this study, the Martinez estimators [49] were used, which imple-
ments a Monte Carlo sampling based procedure to estimate the
Sobol indices. This method is found as a function in R sensitivity
package [39], which offers several global sensitivity methods.

4. Results

4.1. Base case and mean results of simulation samples

Looking at the end-use electricity consumption, in Fig. 4, for the
different locations, it is clear that changes between locations are
mainly due to changes in chiller end-use. For annual demand, in
Fig. 4 (a), the total demand for C1-Singapore is 235 kWh.m�2.
yr�1, and 53% of this is for HVAC end-use (124 kWh.m�2.yr�1).
On the other hand, in C6-London, the total annual demand is 137
kWh.m�2.yr�1, which 19% are for HVAC demand (26 kWh.m�2.
yr�1). For peak demand, in Fig. 4 (b), C4-Beijing is the location that
presents the largest total peak load of 65.7 W.m�2. Chiller load is
25.8 W.m�2 (70% of HVAC) and fans end-use is 5.9 W.m�2 (16%
HVAC). Interestingly, fans end-use loads can be significantly lower
for other locations, during peak periods, as low as 2.5 W.m�2 (C3)
and 1.8 W.m�2 (C6), respectively 9% and 10% of HVAC Load. The
share of HVAC end-use (Chiller + Fans + Heat Rejection + Pumps)
on the total peak load is the largest for C4-Beijing (56%) and the
lowest for C6-London (37%).

What is interesting about the share of the HVAC end-use on
total load, is that it is significantly larger for peak demand than it
is for annual demand. C1-Singapore is an exception, as it shows
similar levels of HVAC share on the total for annual (53%) and peak
demand (55%). On the other hand, C4-Beijing goes from 28% for
annual demand to 56% on the peak. Interestingly, results for space
cooling load (SPC) show different pattern between locations than
for HVAC demand. The differences shown between patterns in
SPC and HVAC results may be explained by the difference in the
efficiency of the operation of systems. Looking at Table A.4–3
and Table A.4–4, it can be seen that the annual energy efficiency
ratio for C1 is much lower than for other locations. A reason for
that is the reduced availability for free-cooling in such a climate.
This is confirmed by a larger amount of chiller load in this site.

The differences in demand patterns between annual and peak
between locations can be explained in part by the clear seasonality



Fig. 4. Mean electricity energy consumption and space cooling using Morris EE method sample, for annual (a) and peak (b), by end-Use.
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of weather experienced in most of the locations analysed in this
study. Except for C1-Singapore, presenting a tropical climate,
which does not present clear-cut seasons and the weather is humid
and warm all year round. Therefore, it is expectable that annual
energy consumption for HVAC-end use for such a location is signif-
icantly larger than for the other locations analysed in this study.
Therefore, changes in total annual demand for HVAC are also
affected differently in this location than for the remaining. One
objective of this study was to identify if the sensitivity of the build-
ing model outputs is larger for peak or annual demand. Stating the
differences between locations on the initial base-case is important
for a discussion of the sensitivity results in following sub-sections.

4.2. Range of simulation results of building thermal performance in six
cities

The analyse of the distribution of the results for each output
variable analysed within the different locations, in Fig. 5, clearly
show that the pattern of changes in the whole sample of results
is similar across the different locations. In addition, the differences
between locations are different according to annual or peak
demand, and between different variables. From the results pre-
sented in Fig. 5, it is also clear that base case results are on the bot-
tom end quantile of sample results, among the different outputs for
both annual and peak demand. It is also clear that Morris sample
results range is slightly wider than Sobol results. These discrepan-
cies could be attributed to the fact that Sobol sample is only iterat-
ing a selected batch of parameters (6) from the input space used on
Morris EE method (14), considering the same range limits.

The position of base case results, shown in Fig. 5, within the
whole range of the sample results are likely to be related to the
selection of the input parameters ranges for the building model
inputs. The main driver may be the selection of the base value
within the limits of the input parameter range. In Fig. 6, it is pos-
sible to identify that most of the base parameter values are within
the middle quantiles of the chosen parameter range. However, the
base value of some parameters is clearly on the bottom or top end
of its intervals. P10, ventilation, is one of these parameters, and P10
is the parameter with the largest individual contribution to
changes in most of the output variables analysed (presented and
discussed in further detail in following subsection 4.3 and 4.4).
Therefore, having its base value at the bottom end of the input
range interval leads to the overall results within the sample to
being offsetted from the base case result.

To compare and quantify the difference between the changes on
different output metrics (variables analysed) over the sample of
simulations, the coefficient of variation (cv) of the different output
metrics is analysed. Coefficient of variations were calculated for
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each location, output metric and time resolution, which are pre-
sented in Table 4. Closer inspection of the table shows that varia-
tion in electricity demand over peak is larger than for annual
demand. For example, the coefficient of variation of the total elec-
tricity is close to 25.6% for peak and 21% for annual demand. How-
ever, for C1-Singapore and C6-London the coefficients of variation
for total peak and annual demand are much closer to each other
than for the other locations (C1- 25.7% vs 24.3% and C6- 21.8% vs
21.4%).

Turning now to the analysis of the coefficient of variation of the
different HVAC demand, it is possible to see that variation can be
around 40% for peak and 32% for annual demand (in C2-3–4-5).
Interestingly, the Fans end-use shows the largest coefficient of
variation for peak demand, reaching up to 80% (C5), when it is
35% for annual demand. In the supplementary material of this
paper, more results from the variance of results between the differ-
ent climates, periods and output variables are given.

For space cooling demand, the impacts over annual demand are
larger than for peak demand, especially for C6-London and in less
extent for C1-Singapore. For space cooling output variable, the
variance of the results for peak demand is similar among all loca-
tions (going from 20%–C2 to 23.5%-C6). For the annual demand
case, the differences between locations are more significant, from
19% in C1 to 30.4% in C6. This clearly shows that the location due
to the respective climate conditions have different implications
for the HVAC performance and respective space cooling
requirements.
4.3. Sensitivity results from the Morris EE method

The next section of the result analysis was concerned with eval-
uating the sensitivity of results regarding changes to the 14 param-
eters in the input space, using the Morris EE method. In Fig. 7 and
Fig. 8, the ranking order of factors is made based on the mean sen-
sitivity indices (m*). What stands out in these figures is that the
ranking order of the indices is different between different outputs,
and when comparing the annual demand and the peak load. It is
apparent from these results that the ranking of the sensitivity
indices, in some outputs, may change between the different cli-
mates. Interestingly, results for C1-Singapore looking at total
annual demand stand from the remaining location results. Simi-
larly, results for C6-London are significantly different when explor-
ing the total peak load. However, it is important to analyse these
results, acknowledging that calculated Morris EE means indices
are dependent on the absolute value of the output metric for each
location. Thus, these differences in some locations are consistent
with the previously discussed finding that annual demand for



Fig. 5. Boxplot diagram of results for Morris EE and Sobol methods, comparing to base case simulation results.

Fig. 6. Position of base case parameters within each input parameter space range.

Table 4
Coefficient of variation (cv) of Morris Method sample.

Annual Peak

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C6

Total 24.3% 21.1% 20.9% 21.0% 21.0% 21.4% 25.7% 24.5% 24.5% 25.6% 25.7% 21.8%
HVAC 38.0% 33.3% 31.4% 31.9% 31.6% 28.9% 39.7% 38.5% 40.8% 39.1% 41.2% 33.8%
SPC 19.4% 21.9% 24.0% 25.4% 26.4% 30.4% 22.3% 20.1% 21.2% 21.7% 22.0% 23.5%
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C1-Singapore is much larger and there is a lower demand for the
peak in C6-London.

It is apparent from the order of the mean sensitivity value for
HVAC electricity end-use results are the most sensitive to changes
on parameter P10, ventilation rate, both for annual and peak, and
at a second level by the ambient set point (P8) and the COP
(P12) and then by the equipment (P6) and lighting (P5) heat gains.
For total demand, these indices are only altered for parameter P06,
P05 and P14, as they are the only parameters that contribute to
changes in other end uses of electricity demand (lighting and
equipment) beside HVAC end-use. P06 and P05 become the largest
9

contributors for total demand paired with P10, for both annual and
peak. However, the contribution of P05 and P06 compared to P10
are dependent on location. Thus, this is related to the sensitivity
level of P10 for HVAC demand. So, when the sensitivity of P10
for HVAC is not large, P05 and P06 rank higher on total demand,
as for most locations for annual demand and C6-London for peak
demand.

Turning now to the SA of SPC, for annual demand, P05 and P06
are the largest contributors and at second stage P03, P08, P07 and
P14. It is possible to verify that locations lead to larger or smaller
contributions, but changes on the ranking of parameters are not



Fig. 7. Morris EE m* indices for each input parameter relative to annual demand output results.

Fig. 8. Morris EE m* indices for each input parameter relative to peak demand output results.
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significant. For Peak demand, P08 is the largest contributor, fol-
lowed on a second stage by P05 and P06, and then by P10. The con-
tribution of each parameter significantly changes between
locations, especially for parameter P08 and P10. This result is
somewhat surprising when compared to the contribution of the
same parameters on HVAC demand.

The results of the Morris EE SA, in this study, indicate that the
contribution of the different parameters is significantly related to
the output variable analysed. The ranking and the value of the
Morris EE indices are also clearly dependent on the time frame (an-
nual or peak) and the location considered. In general, it seems that
locations have different implications for the contribution of each
parameter. The change of proportion is also evident between loca-
tion and depending on if we are analysing annual or peak demand.
However, the ranking provided by Morris EE method is aimed to
enable a qualitative measure and not to quantify the effect of the
factors on outputs [22]. Anyway, this screening method, due to
the low computational costs, is suitable to identify a few influential
factors among many.

In summary, P10, P06 and P05 are the parameters that con-
tribute the most for the sensitivity of the building model results
across all locations, for both peak and annual demand and most
of the output variables analysed. P08, the ambient set-point and
P12, the COP of the chiller, are the two next parameters that con-
tribute more for the sensitivity of the building model, especially for
10
HVAC end-use. Interestingly, P08 is the parameter with the largest
contribution for peak SPC and the third largest for SPC annual
demand after P06 and P05. P07 – occupancy density, P03 SHGC
of the glazing and P14 the stretch operative annual hours have pre-
sented a significant level of contribution for the sensitivity in dif-
ferent output analysed. From these three parameters, P07 was
selected to be further analysed on a Sobol indices analysis, as occu-
pant behaviour is often analysed when checking the impacts on
building energy performance. Thus, for the next sensitivity test,
the Sobol indices analysis, P05, P06, P07, P08, P10 and P12 are
selected to be tested.

4.4. Sensitivity results from the Sobol method

The analysis of Sobol sensitivity indices, which are shown in
Fig. 9 and Fig. 10, identify that for the total annual demand, P06
and P05 are the single largest contributors, except for C1-
Singapore, contributing respectively up to almost 60% and 40%
for C6-London. P10 is the following parameter to contribute the
most, and for C1-Singapore, it contributes almost 45%. For peak
demand, P10 is the single parameter that contributes the most,
up to 42% in C4-Beijing. P06 and P05 follow with respectively
almost 25% and 20%. A comparison of the Sobol indices for HVAC
demand shows that the contribution of parameters is similar
between climates, especially for peak demand. P10 is the single



Fig. 9. Sobol total sensitivity indices for annual demand results.

Fig. 10. Sobol total sensitivity indices for peak demand results.
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parameter that contributes the most followed by P08 and P12.
Regarding the SPC output metric, it is clear that P06 and P05 have
the largest contributions for annual demand. P08 is the parameter
that follows for annual, but for peak case, it is for most locations
the largest contributor for change, and it can represent up to 60%.

In this analysis of Sobol indices, similar trends on the impor-
tance of parameters were found relative to the findings of the
results of the Morris EE method. The ranking of parameters for
the different metrics and time case is similar, but better quantifica-
tion of differences between contributions are possible to state. In
this method, it is possible to confirm that C1-Singapore and C6-
London are outliers respectively for annual and peak demand.
P10 is the parameter with the largest contribution for HVAC
demand, and its contribution for total demand seems to be related
to the share of HVAC load on the total. Thus, this contribution is
larger for peak than for annual, and it is consistently larger on loca-
tions that present a larger share of HVAC on total demand. Interest-
ingly, for space cooling, P08 - the cooling set point factor presents
changes on the contribution based on location. On peak demand,
the contribution of P08 can be substantially reduced for a location
such as C5-Lisbon and C6-London, such that P06 and P05 factors
become the largest contributors. Similarly, its contribution to
annual HVAC demand change is also much larger for C6-London.
However, looking to the results from HVAC demand it is possible
11
to infer that these differences are related to the share of the HVAC
load on the total load.

5. Discussion

This study set out with the aim of examining the sensitivity of
cooling demand related results in a large office building, both for
annual and peak demand. For large office buildings, it is clear that
P10 – ventilation rate is the single parameter that contributes the
most for HVAC demand. Very little was found in the literature
regarding the impacts of ventilation rate for cooling requirements
and total electricity demand. For example, Østergård et al. [50]
concluded that ventilation is the parameter with the largest contri-
bution to the energy demand of an office building in a heating-
dominated location, in Denmark. Huang et al [51] concluded that
outdoor airflow rate is the third parameter that contributes the
most for the energy consumption of a zero-carbon building in
Hong Kong, after parameters such as skylight to roof ratio and solar
heat gain coefficient of the skylight. The results presented in this
study differ from [26] and [13], which concluded that occupant
density in the building is the single most contributor for peak cool-
ing sensitivity and annual cooling demand, respectively. In this
study, it was concluded that P07 – occupant density has a small
contribution (less than 5%) to both peak and annual HVAC demand.
This inconsistency is likely to be related to the fact that in many
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modelling approaches, ventilation rates are related to the occu-
pancy of the spaces. In this study, the ventilation rate of spaces is
completely decoupled from space occupancy. Some other studies
have analysed the sensitivity of infiltration rates, such as [28]
and [10]. However, both concluded that the contribution of infiltra-
tion rates are normally lower than the contribution of the other
parameters. These findings are consistent with low sensitivity that
parameter P11 – infiltration shown in this study, on the Morris EE
method. A note of caution is due here since the infiltration rate
range covered in this study is roughly between 0.1 and 3 l.s�1.
m�2 (envelope surface area), between 0.03 and 1 air changes per
hour on this building model. For similar infiltration rates per envel-
ope area, the total air change rate may be much superior in build-
ings that present much higher ratio between envelope surface area
and floor space area. In such type of buildings, infiltration rates
may present much higher implications for cooling demand.

For the design of new buildings or retrofit of buildings, the
research findings can inform that it is important to focus on the
ventilation rate and then for equipment and lighting densities, to
reduce total electricity building peak load. To reduce annual elec-
tricity demand, equipment and lighting densities can have the lar-
gest contribution. However, for climates with constant large
cooling demand throughout the whole year such as faced in Singa-
pore, ventilation rates have the largest contribution to the annual
electricity demand. For the sizing of the HVAC equipment (peak
and annual HVAC electricity demand), the ventilation rate is the
parameter that contributes the largest and it is followed by the
ambient set-point and the coefficient of performance.

One of the initial objectives of this study was to identify the
implications of different locations on the sensitivity of the cooling
and total loads of an office building. This study has found that dif-
ferent types of climates may lead to different responses to the sen-
sitivity of the total electricity demand. As mentioned in the
literature review, not many studies have analysed the implications
of different locations for the sensitivity of cooling related demand
in buildings. Mechri et al. [52] identified that the value of a param-
eter’s sensitivity index for cooling energy needs is similar across
five different locations that represent significantly different cli-
mates across Italy. In this study, similar findings were achieved
on the sensitivity linked to HVAC demand. However, the effects
on total demand are significantly different, which is also found
by Huang et al. [32]. The weather conditions significantly influence
the optimal configuration of building chillers in a study of the
uncertainty of cooling loads. These different findings show that it
is important to have a more holistic approach to analysing the
uncertainty and sensitivity of building models. Therefore, this
study has analysed simultaneous different output variables and
considering both peak and annual periods.

Since the study was limited to the analysis of one large office
building model with a single type of HVAC system, it is not possible
to extend that the findings of this study are similar to other types
of buildings and different type of HVAC systems. For example, it
would be important to analyse other types of archetype office
buildings, as small and medium types, to explore the implications
of other type HVAC systems, and different type of building forms. It
is plausible that larger ratios of envelope area per floorspace area
lead to different findings. The study is also limited by the lack of
ability to change building model parameters as glazing area, the
ratio between length and width of the building, or to expand
stretch the ratio between floor space area and envelope area. The
analysis of the implications of some of these parameters is impor-
tant to be made, especially regarding the possible interactions that
may exist with some parameters considered in this study. Next, the
study conducted a static approach to model several parameters in
the analysis, especially on HVAC parameters. A more dynamic and
sparse modelling approach will probably enable to analyse the
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implications of smart control of detrimental parameters during
peak periods. This type of modelling may be able to mimic real
practices on building systems management and upgrade the
impacts of the analysis. The assumptions on the limits of the
uncertainty range and especially on the distribution of these
ranges may lead to bias findings. Further work is required to estab-
lish the effect of uncertainty quantification assumptions, consider-
ing diversified archetypes that include more detailed and
representative benchmark data. Finally, it may be interesting to
analyse the implications between HVAC demand and space cooling
needs, also considering the requirements specifically for sensible
and latent loads.

The results presented in this study corroborate to similar find-
ings with previous works, which links equipment and lighting den-
sity loads as the parameters that contribute the most for total
annual electricity demand on buildings. These results are consis-
tent with De Wilde et al. [27] that indicate that lighting and equip-
ment are the largest contributors for the overheating in current
weather conditions in Birmingham, UK. The findings of this study
are also in agreement with findings in De Wilde et al. [27], that
show that in future warmer climates the contribution of these
two factors is reduced, as the cooling needs increase with increas-
ing temperatures.

The present results of this study are significant in at least two
major respects. First, the change in peak demand can be signifi-
cantly larger than it is for annual demand, especially on climates
with hot summers and significant seasonal patterns (C2-C3-C4-
C5). Second, the contribution of different parameters for the HVAC
demand is similar between locations, for both annual and peak
demands. However, the contribution for total electricity demand
is strongly affected by the location, which is caused by the share
of HVAC loads on the total demand. Finally, it is clear that for both
annual and peak demand, ventilation rate –P10 is the single
parameter that contributes the most for HVAC demand, and conse-
quently for total demand. P06 and P05 are the contributors that
follow for total demand, and together they can still contribute to
more than 50% of demand.
6. Conclusion

The present research aimed to examine the sensitivity of cool-
ing demand related results (total electricity demand, HVAC end-
use and space cooling) in a large office building, so identifying
the parameters that have a larger contribution to these different
results. In addition, it examines the implications of different type
of climates to the uncertainty in these different output results
and the sensitivity of the different parameters for each result.
The second aim of this paper was to investigate the difference
between the effects of annual and peak analysis.

This study has found that generally, the changes are more sig-
nificant for peak demand than for annual demand. This is the case
for most of the climates, for total and HVAC loads, as for example
the CV on total peak demand is around 25% and 21% for total
annual demand. The exceptions are C1-Singapore and C6-London,
where the CV of peak demand is just slightly larger than annual.
The research has also shown that the implications are different
for the different outputs analysed, such that the CV of space cool-
ing and the different HVAC end-use varies differently. Also, the
contribution of each parameter is significantly different when con-
sidering the different outputs and periods. The variation of the
importance of parameters can be substantially different, depend-
ing on the climate considered and the output variable analysed.
For example, P10 is the most important contributor for changes
in HVAC peak demand, with a similar level of contributions, but
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the implication for total peak load is significantly different depend-
ing on the climate.

The study contributes to the understanding of the implications
of the uncertainty of building simulation assumptions on electric-
ity consumption mainly driven by space cooling demand. This
study identifies that the ventilation rate of a building (P10) is the
parameter that contributes the largest for the electricity demand
of the HVAC end-use, between 50% and 70% of the change (ST), both
for annual and peak demand. Regarding the effect on total electric-
ity demand, ventilation rate is still one of the most important fac-
tors, but P05 and P06 also become a major contributor to the
sensitivity of the total demand. This is even more evident, for
annual demand, where P05 and P06 together can contribute to
up to 90% of the changes in total annual electricity demand. Differ-
ent results were reported according to the different locations anal-
ysed, so the contribution of P05 and P06 is decreased the largest
the proportion of HVAC end-use is in the total load, contributing
roughly 40% for a location such as C1-Singapore. Therefore, tropical
climates such as C1-Singapore, with stable monthly loads lead to
many different conclusions than all the other locations analysed.
Moreover, this study also provides insight on capacity design for
building cooling systems, which is significant in comparison with
reducing energy use of buildings. The cooling systems in various
locations should be carefully decided based on the combination
of uncertainty and sensitivity analysis. The sensitivity analysis
can be used to determine the main factor influencing peak cooling
loads, while the uncertainty analysis can provide reliability of cool-
ing system design by considering uncertain factors.

A natural progression of this work is to make similar sensitivity
analyses in small and medium reference office buildings. Further
work also needs to be done to establish the implications of changes
in the type of HVAC and the type of operation considered, to the
sensitivity and uncertainty of the model outputs, especially on
how this could alter the relationship with peak demand. One
potential challenge is to develop and adapt an office building
model that can automatically iterate the form of a model, main-
taining all the geometry constrains between internal zones, so
the whole integrated simulation of the building can be performed
considering specific alterations of the building geometry (glazing
areas, w-l ratios, envelope ratios). Further research should focus
on determining the implications of considering a different type of
statistical distributions of the input parameters and the limits of
the ranges considered. Another important practical implication is
that future research studying the sensitivity on cooling demand
of buildings should undertake more holistic approach and over-
view the impacts over annual, peak spans, and the implications
to HVAC end-use and the total final energy demand.
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